International Journal of Mechanical and Production Engineering (IJMPE)
.
Follow Us On :
current issues
Volume-12,Issue-1  ( Jan, 2024 )
Past issues
  1. Volume-11,Issue-12  ( Dec, 2023 )
  2. Volume-11,Issue-11  ( Nov, 2023 )
  3. Volume-11,Issue-10  ( Oct, 2023 )
  4. Volume-11,Issue-9  ( Sep, 2023 )
  5. Volume-11,Issue-8  ( Aug, 2023 )
  6. Volume-11,Issue-7  ( Jul, 2023 )
  7. Volume-11,Issue-6  ( Jun, 2023 )
  8. Volume-11,Issue-5  ( May, 2023 )
  9. Volume-11,Issue-4  ( Apr, 2023 )
  10. Volume-11,Issue-3  ( Mar, 2023 )

Statistics report
Apr. 2024
Submitted Papers : 80
Accepted Papers : 10
Rejected Papers : 70
Acc. Perc : 12%
Issue Published : 130
Paper Published : 2388
No. of Authors : 6802
  Journal Paper


Paper Title :
Geometric Optimization Of High Temperature Shell And Tube Latent Heat Thermal Energy Storage

Author :S. Saeed Mostafavi Tehrani, Gonzalo Diarce, Robert A. Taylor, Pouya Saberi, Ardalan Shafiei Ghazani

Article Citation :S. Saeed Mostafavi Tehrani ,Gonzalo Diarce ,Robert A. Taylor ,Pouya Saberi ,Ardalan Shafiei Ghazani , (2016 ) " Geometric Optimization Of High Temperature Shell And Tube Latent Heat Thermal Energy Storage " , International Journal of Mechanical and Production Engineering (IJMPE) , pp. 120-126, Volume-4,Issue-6

Abstract : A simple geometry shell and tube heat exchanger provides a straightforward design for near-term integration of latent heat thermal energy storage systems in concentrated solar thermal plants, but currently there is no literature available for this configuration in the 286-565 ˚C temperature range. Therefore, the objective of this work is to evaluate the potential of this configuration for CST-tower plants by proposing a proper design method. The work has been done by optimizing the main geometric parameters involved along with considering a market ready phase change material (H500 salt). The optimization consisted of fixing the PCM volume while varying the other geometric parameters simultaneously over a wide range. The goal was to achieve the highest amount of total stored/delivered energy in a certain amount of time with a minimum heat transfer surface area. For the selected PCM, the optimum area was found 36-63 m2.GJ-1 (0.12-0.22 m2.kWhth - 1). The storage charging and discharging efficiency for the selected PCM over a cycle of continuous charging and discharging were found ~99% and 85%, respectively. The results also imply that the shell and tube LHTES system is technically competitive with the conventional two-tank molten salts because of its high efficiency. Keywords— High temperature, Phase change material, Optimization, Shell and tube tank

Type : Research paper

Published : Volume-4,Issue-6


DOIONLINE NO - IJMPE-IRAJ-DOIONLINE-4954   View Here

Copyright: © Institute of Research and Journals

| PDF |
Viewed - 68
| Published on 2016-07-21
   
   
IRAJ Other Journals
IJMPE updates
Volume-12,Issue-1 (Jan, 2024 )
The Conference World

JOURNAL SUPPORTED BY